Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Electrospray deposition (ESD) uses strong electric fields applied to solutions and dispersions exiting a capillary to produce charged monodisperse droplets driven toward grounded targets. Self‐limiting electrospray deposition (SLED) is a phenomenon in which highly directed, uniform, and even 3D coatings can be achieved by trapping charge in the deposited film, redirecting the field lines to uncoated regions of the target. However, when inorganic particles are added to SLED sprays, the buildup of charge required to repel incoming material is disrupted as particle loading increases. Due to its fibril gelling behavior, methylcellulose (MC) SLED can form nanowire morphologies. These wires, when used as a binder, can separate particles and prevent percolation. In this work, a variety of conductive and insulating particles are explored using patterned and un‐patterned substrates. This exploration allows us to maximally load particles for high‐concentration and highly controlled self‐limiting functional sprays. This is demonstrated using Ti3C2Tx MXene to functionalize an interdigitated electrode for use as a supercapacitor.more » « lessFree, publicly-accessible full text available November 9, 2025
-
Electrospray deposition (ESD) is employed to produce separator membranes for coin-cell lithium-ion batteries (LIBs) using off-the-shelf polyimide (PI). The PI coatings are deposited directly onto planar LiNi0.6Mn0.2Co0.2O2 (NMC) electrodes via self-limiting electrospray deposition (SLED). Scanning electron microscopy (SEM), optical microscopy, and spectroscopic microreflectometry are implemented in combination to evaluate the porosity, thickness, and morphology of sprayed PI films. Furthermore, ultraviolet-visual wavelength spectroscopy (UV vis) is utilized to qualitatively assess variation in film porosity within a temperature range of 20-400oC, to determine the stable temperature range of the separator. UV vis results underscore the ability of the SLED PI separator to maintain its porous microstructure up to ~350oC. Electrochemical performance of the PI separators is analyzed via charge/discharge cycle rate tests. Discharge capacities of the SLED PI separators are within 83-99.8% of commercial Celgard 2325 PP/PE/PP separators. This study points to the unique possibility of SLED as a separator manufacturing technique for geometrically complex energy storage systems. Further research is needed to optimize the polymer-solvent system to enhance control of porosity, pore size, and coating thickness. This can lead to significant improvement in rate and cycle life performance in more advanced energy storage devices.more » « lessFree, publicly-accessible full text available November 14, 2025
-
Electrospray deposition (ESD) uses strong electric fields to produce generations of monodisperse droplets from solutions and dispersions that are driven toward grounded substrates. When soft materials are delivered, the behavior of the growing film depends on the film’s ability to dissipate charge, which is strongly tied to its mobility for dielectric materials. Accordingly, there exist three regimes of electrospray: electrowetting, charged melt, and self-limiting. In the self-limiting regime, it has been recently shown that the targeted nature of these sprays allows for corona-free 3D coating. While ESD patterning on the micron-scale has been studied for decades, most typically through the use of insulating masks, there has been no comparative study of this phenomenon across spray regimes. Here, we used test-patterns composed of gratings that range in both feature size (30–240 μm) and spacing (⅓x–9x) to compare materials across regimes. The sprayed patterns were scanned using a profilometer, and the density, average height, and specificity were extracted. From these results, it was demonstrated that material deposited in the self-limiting regime showed the highest uniformity and specificity on small features as compared to electrowetting and charged melt sprays. Self-limiting electrospray deposition is, therefore, the best suited for modification of prefabricated electrode patterns.more » « less
-
Electrospray deposition (ESD) has shown great promise for manufacturing micro- and nanostructured coatings at scale on versatile substrates with complex geometries. ESD exhibits a broad spectrum of morphologies depending upon the properties of spray fluids. Among them are nanowire forests or foams obtained via the in-air gelation of electrospray droplets formed from methylcellulose (MC) solutions. In this study, we explored MC ESD loaded with nanoparticles of various shapes and uncovered the effects of particle fillers on morphology evolution using coarse-grained simulations and physical experiments. Utilizing electrostatic dissipative particle dynamics, we modeled the electrohydrodynamic deformation of particle-laden MC droplets undergoing in-flight evaporation. The simulations quantitatively predict the suppression of droplet deformation as the size or concentration of spherical nanoparticles increases. While small particles can be readily encapsulated into the nanowire body, large particles can arrest nanowire formation. The model was extended to nanoparticles with complex topologies, showing MC nanowires emerging from particle edges and vertices due to curvature-enhanced electric stress. In all cases, strong agreements were found between simulation and experimental results. These results demonstrate the efficacy of the coarse-grained model in predicting the morphology evolution of electrosprayed droplets and lay the groundwork for employing MC nanowires for developing nanostructured composites.more » « less
An official website of the United States government
